CHARACTERISTICS OF NATURAL DYE EXTRACT OF BOUGAINVILLEA (Bougainvillea glabra) WITH TIME AND POWER VARIATIONS USING MICROWAVE ASSISTED EXTRACTION METHOD

KARAKTERISTIK EKSTRAK PEWARNA ALAMI BUNGA BUGENVIL (Bougainvillea glabra) DENGAN VARIASI WAKTU DAN DAYA MENGGUNAKAN METODE MICROWAVE ASSISTED EXTRACTION

Ni Putu Suwariani*, Ni Made Wartini, Bunga Aprilianti

Program Studi Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Universitas Udayana, Kampus Bukit Jimbaran, Badung, Kode pos: 80361; Telp/Fax: (0361) 701801.

Diterima 7 Agustus 2025 / Disetujui 15 September 2025

ABSTRACT

Bougainvillea (Bougainvillea glabra) is a natural source of betacyine pigment which has the potential to be a food coloring as well as an antioxidant. This study aims to determine the effect of extraction time and power using the Microwave Assisted Extraction method on the characteristics of bougainvillea flower extract which includes yield, total betasianine, color intensity (a*, b*), and antioxidant capacity and determine certain extraction time and power to produce the best bougainvillea flower extract. The study used a factorial Group Random Design (RAK) with two factors: time (3, 5, 7 minutes) and power (100, 300 watts). The results showed that the combination of time and power had a very pronounced effect (P<0.01) on all parameters. The best treatment was obtained at 5 minutes and a power of 100 watts, with a yield of 56.26%, total betasianine 20.56mg/100g, color intensity a* 30.31; b* 16.06, and antioxidant capacity of 495.27mg GAE/100g. MAE method has been proven to be effective in producing high-quality bougainvillea flower extract as a natural dve and antioxidant.

Keywords: Bougainvillea glabra, MAE, betasianine, time, power.

ABSTRAK

Bunga bugenvil (Bougainvillea glabra) merupakan sumber pigmen betasianin alami yang berpotensi sebagai pewarna makanan sekaligus antioksidan. Penelitian ini bertujuan untuk mengetahui pengaruh waktu dan daya ekstraksi menggunakan metode Microwave Assisted Extraction terhadap karakteristik ekstrak bunga bugenvil yang meliputi rendemen, total betasianin, intensitas warna (a*, b*), dan kapasitas antioksidan serta menentukan waktu dan daya ekstraksi tertentu untuk menghasilkan ekstrak bunga bugenvil terbaik Penelitian menggunakan Rancangan Acak Kelompok (RAK) faktorial dengan dua faktor: waktu (3, 5, 7 menit) dan daya (100, 300 watt). Hasil menunjukkan bahwa kombinasi waktu dan daya berpengaruh sangat nyata (P<0,01) terhadap seluruh parameter. Perlakuan terbaik diperoleh pada waktu 5 menit dan daya 100 watt, dengan rendemen 56,26±0,98 %, total betasianin 20,56±0,24 mg/100g, intensitas warna a* 30.31 ± 0.11 ; b* 16.06 ± 0.17 , serta kapasitas antioksidan sebesar 495.27 ± 2.69 mg GAE/100g. Metode MAE terbukti efektif menghasilkan ekstrak bunga bugenvil berkualitas tinggi sebagai pewarna alami dan antioksidan.

Kata kunci: Bougainvillea glabra, MAE, betasianin, waktu, daya.

Email: suwariani@unud.ac.id

* Korespondensi Penulis

PENDAHULUAN

Bunga bugenvil adalah tanaman hias tropis dari keluarga *Nyctaginaceae* yang banyak ditemukan di wilayah Asia, termasuk Indonesia. Selain keindahan bunganya, bugenvil (*Bougainvillea glabra*) menyimpan potensi sebagai sumber pigmen alami, khususnya betasianin, yang merupakan senyawa pewarna berwarna merah-ungu. Betasianin termasuk dalam kelompok betalain yang larut dalam air, dan telah terbukti memiliki aktivitas biologis seperti antioksidan, anti inflamasi, serta anti mikroba (Herbach et al., 2016; Tesoriere et al., 2019). Sifat fungsional ini menjadikan bugenvil sebagai kandidat potensial bahan baku pewarna makanan alami, yang lebih aman dibandingkan pewarna sintetis.

Kebutuhan terhadap pewarna alami saat ini meningkat, seiring dengan meningkatnya kesadaran konsumen terhadap pentingnya keamanan pangan. Pewarna alami tidak hanya memberikan tampilan visual yang menarik pada produk makanan, tetapi juga dapat memberikan manfaat fungsional tambahan (Puspitasari et al., 2024). Namun, untuk memanfaatkan senyawa aktif seperti betasianin secara optimal, diperlukan teknik ekstraksi yang efisien, selektif, dan mampu menjaga kestabilan senyawa bioaktif tersebut.

Salah satu metode modern yang banyak digunakan adalah *Microwave Assisted Extraction* (MAE). MAE merupakan teknik ekstraksi berbasis pemanasan menggunakan gelombang mikro, di mana pelarut dan matriks bahan dipanaskan secara cepat dan merata. Metode ini memiliki sejumlah keunggulan, antara lain: waktu ekstraksi yang lebih singkat, konsumsi pelarut yang lebih sedikit, efisiensi energi yang tinggi, serta kemampuan mempertahankan integritas senyawa aktif (Elik et al., 2017; Saman et al., 2015).

Namun demikian, efektivitas MAE sangat dipengaruhi oleh kondisi proses seperti waktu ekstraksi dan daya *microwave*. Kedua parameter ini berperan penting dalam menentukan suhu ekstraksi dan kecepatan pelepasan senyawa aktif dari jaringan tanaman. Jika daya dan waktu terlalu rendah, senyawa aktif mungkin tidak sepenuhnya terekstraksi. Sebaliknya, jika keduanya terlalu tinggi, senyawa yang sensitif terhadap panas seperti betasianin dapat mengalami degradasi termal, yang menyebabkan penurunan kualitas ekstrak, baik dari segi warna maupun aktivitas biologisnya (Sandy et al., 2021; Kamaluddin et al., 2014). Oleh karena itu, pemilihan kombinasi waktu dan daya yang tepat menjadi kunci keberhasilan proses ekstraksi menggunakan MAE.

Penelitian sebelumnya menunjukkan bahwa parameter ekstraksi dapat mempengaruhi rendemen, intensitas warna, dan kapasitas antioksidan dari ekstrak tanaman yang mengandung betasianin. Warna ekstrak biasanya diukur dalam parameter a* (kemerahan), dan b* (kekuningan), sementara kapasitas antioksidan menunjukkan potensi fungsional dari ekstrak dalam menetralkan radikal bebas (Herbach et al., 2006; Pramudika, 2023).

Berdasarkan latar belakang tersebut, Penelitian ini bertujuan untuk mengetahui pengaruh waktu dan daya ekstraksi menggunakan metode *Microwave Assisted Extraction* terhadap karakteristik ekstrak bunga bugenvil yang meliputi rendemen, total betasianin, intensitas warna (a*, b*), dan kapasitas antioksidan serta menentukan waktu dan daya ekstraksi tertentu untuk menghasilkan ekstrak bunga bugenvil terbaik. Parameter yang diamati meliputi rendemen ekstrak, total betasianin, warna (a*, b*), serta kapasitas antioksidan. Hasil penelitian ini diharapkan dapat memberikan informasi mengenai kombinasi parameter ekstraksi yang paling efektif untuk memperoleh ekstrak bunga bugenvil yang berkualitas tinggi sebagai sumber pewarna alami sekaligus antioksidan.

METODE PENELITIAN

Bahan dan Alat

Beberapa bahan yang diperlukan dalam penelitian ini meliputi, bunga bugenvil berwarna merah violet yang diperoleh di Kecamatan Banjarangkan, Kabupaten Klungkung, Bali. Bahan kimia yang digunakan dalam proses ekstraksi meliputi etanol 96% (pelarut teknis Bratachem), asam sitrat (Saba Kimia). Sementara itu bahan kimia yang digunakan untuk analisis meliputi Buffer sitrat pH 5, asam galat, aquades, metanol PA, dan DPPH (2,2-diphenyl-1-picryl-Hydrazyl) yang semuanya memiliki spesifikasi pelarut E. Merck.

Peralatan yang diperlukan diantaranya *microwave* (Samsung) spektofotometer (Uv-Vis), *colour reader*, *microwave* (Samsung), oven dryer (ESCO Isotherm OFA-110-8), blender (Miyako), pH meter, ayakan 60 *mesh* (Retsch), vortex (*Barnsteadl Thermolyne*), timbangan analitik (Ohaus), kertas saring kasar, kertas saring *whattman* No. 1, *rotary vacuum evaporator* (IKA RV 10 basic), *vortex mixer*, tabung reaksi (Iwaki), rak tabung reaksi, erlenmeyer (Iwaki), labu ukur (Iwaki), labu didih (Durhan), alumunium foil), pipet mikro (*Eppendorf*), tip, corong kaca (Iwaki), pipet tetes, labu ukur (Iwaki), gelas beaker (Iwaki), gelas ukur (Iwaki), botol kaca gelap dan kertas label.

Rancangan Penelitian

Penelitian ini menggunakan Rancangan Acak Kelompok (RAK) faktorial dengan menggunakan dua faktor. Faktor pertama yaitu waktu ekstraksi (W), dan faktor kedua yaitu daya *microwave* (D). Faktor pertama waktu ekstraksi (W), terdiri atas 3 taraf, yaitu:

W1 = 3 menit

W2 = 5 menit

W3 = 7 menit

Faktor kedua daya *microwave* (D), terdiri atas 2 taraf, yaitu:

D1 = 100 watt

D2 = 300 watt

Kombinasi perlakuan antara waktu ekstraksi dan daya *microwave* menggunakan Metode MAE dapat dilihat sebagai berikut:

W1D1 = Waktu 3 menit, daya 100 watt

W1D2 = Waktu 3 menit, daya 300 watt

W2D1 = Waktu 5 menit, daya 100 watt

W2D2 = Waktu 5 menit, daya 300 watt

W3D1 = Waktu 7 menit, daya 100 watt

W3D2 = Waktu 7 menit, daya 300 watt

Dari uraian di atas diperoleh 6 kombinasi perlakuan, masing-masing kombinasi perlakuan dilakukan pengelompokkan sebanyak 3 kali sehingga diperoleh total 18 unit percobaan. Pengelompokan dilakukan berdasarkan waktu pengerjaan. Data yang diperoleh kemudian akan dianalisis dengan menggunakan analisis variansi (ANOVA). Apabila perlakuan berpengaruh terhadap variabel yang diamati maka dilakukan uji lanjut yaitu uji *Duncan Multiple Range Test* (DMRT) menggunakan *Microsoft Excel*. Penentuan perlakuan terbaik dilakukan dengan Uji Indeks Efektivitas (De Garmo et al., 1984).

Pelaksanaan Penelitian

Penelitian ini dilakukan dalam beberapa tahapan utama, yaitu persiapan bahan, pengolahan bubuk bunga bugenvil, ekstraksi menggunakan metode *Microwave Assisted Extraction* (MAE), serta pemekatan ekstrak. Bunga bugenvil (*Bougainvillea glabra*) segar berwarna merah violet disortir,

dicuci bersih, lalu dikeringkan menggunakan dehidrator pada suhu 50°C selama 24 jam untuk mempertahankan stabilitas senyawa aktif seperti betasianin (Kamaluddin et al., 2014). Bunga bugenvil kering dihaluskan menggunakan blender, kemudian diayak dengan saringan 60 mesh untuk memperoleh bubuk halus. Sebanyak 10 gram serbuk diekstraksi menggunakan 200 mL etanol 96% yang diasamkan dengan asam sitrat hingga pH 2,25, dengan rasio bahan terhadap pelarut 1:20 (b/v), mengacu pada metode modifikasi dari Pratiwi et al. (2023). Proses ekstraksi dilakukan dengan variasi waktu (3, 5, dan 7 menit) dan daya *microwave* (100 dan 300 watt). Campuran bahan dan pelarut dimasukkan ke dalam *Erlenmeyer* dan diekstraksi tanpa penutup. Gelombang mikro mempercepat pemecahan dinding sel dan pelepasan senyawa aktif melalui pemanasan internal yang efisien (Elik et al., 2017). Setelah ekstraksi, campuran disaring dua kali menggunakan kertas saring kasar dan *Whatman* No. 1 untuk memperoleh filtrat jernih. Filtrat selanjutnya diuapkan menggunakan *rotary vacuum evaporator* pada suhu 40°C, tekanan 100 mBar, dan kecepatan 65 rpm hingga diperoleh ekstrak kental. Ekstrak yang dihasilkan ditimbang untuk menghitung rendemen, kemudian disimpan dalam botol gelap sebelum dianalisis lebih lanjut terhadap parameter total betasianin, intensitas warna (a*, b*), dan kapasitas antioksidan (Puspitasari et al., 2024; Herbach et al., 2006).

Variabel yang Diamati

Variabel yang terlibat dalam proses ektraksi bunga bugenvil diantaranya rendemen (%), total betasianin (mg/100g) (Eder, 1996), Intensitas warna (tingkat kemerahan a*, tingkat kekuningan b*) (Weaver, 1996), kapasitas antioksidan (Blouis, 1958).

HASIL DAN PEMBAHASAN

Rendemen Bunga Bugenvil

Hasil sidik ragam menunjukkan bahwa waktu dan daya *microwave* berpengaruh sangat nyata (P< 0,01), interaksi antar perlakuan waktu dan daya *microwave* berpengaruh nyata (P< 0,05) terhadap rendemen ekstrak pewarna alami bunga bugenvil. Nilai rata-rata rendemen bunga bugenvil dapat dilihat pada Tabel 1.

Tabel 1. Nilai rata-rata rendemen (%) pengaruh waktu dan daya terhadap ekstrak pewarna alami bunga bugenvil

Waktu	Daya	
	100 watt	300 watt
3 menit	$74,00 \pm 3,27a$	$63,67 \pm 1,70$ b
5 menit	$56,\!26 \pm 0,\!98c$	$43,08 \pm 0,33$ de
7 menit	$54,13 \pm 0,50$ cd	$41,37 \pm 1,20e$

Keterangan: Huruf kecil yang berbeda di belakang nilai rata-rata menunjukkan perbedaan signifikan secara statistik berdasarkan uji lanjut DMRT pada *microsoft excel* pada taraf signifikasi P < 0,05

Pada Tabel 1 rendemen tertinggi diperoleh pada perlakuan waktu ektraksi 3 menit dengan daya 100 watt sebesar 74%, sedangkan rendemen terendah terjadi pada waktu ektraksi 7 menit dengan daya 300 watt sebesar 41,37%. Hasil ini menunjukkan semakin lama waktu ekstraksi dan semakin besar daya maka rendemen yang dihasilkan semakin menurun. Semakin lama waktu ekstraksi dan semakin besar daya menyebabkan semakin tinggi suhu di dalam *microwave*. Hal ini dapat menyebabkan degradasi atau kerusakan komponen bioaktif sehingga menurunkan rendemen ekstrak. Pada penelitian ini daya 100 watt dengan waktu 3 menit merupakan daya dan waktu optimal

untuk mengekstrak warna dari bunga bugenvil. Hal ini sesuai dengan hasil penelitian Purwanti (2024) bahwa semakin singkat waktu dan semakin rendah daya, hasil rendemen cenderung meningkat karena dinilai sudah cukup mampu mengekstrak senyawa aktif tanpa terjadinya degradasi.

Total Betasianin

Hasil sidik ragam menunjukkan bahwa perlakuan waktu dan daya *microwave* memiliki pengaruh yang sangat nyata (P<0,01), interaksi antara perlakuan waktu dan daya *microwave* juga memberikan pengaruh yang sangat nyata (P<0,01) terhadap total betasianin ekstrak pewarna alami bunga bugenvil Nilai rata-rata total betasianin pada ekstrak bunga bugenvil dengan metode MAE dapat dilihat pada Tabel 2.

Tabel 2. Nilai rata-rata betasianin total (mg/100g) pengaruh waktu dan daya *microwave* ekstrak pewarna alami bunga bugenvil dengan metode MAE.

Waktu	Daya		
	100 watt	300 watt	
3 menit	$17,57 \pm 0,38d$	$18,47 \pm 0,24c$	
5 menit	$20,56 \pm 0,24a$	$19,31 \pm 0,24b$	
7 menit	$16,42 \pm 0,38e$	$15,51 \pm 0,29e$	

Keterangan: Huruf kecil yang berbeda di belakang nilai rata-rata menunjukkan perbedaan signifikan secara statistik berdasarkan uji lanjut DMRT pada *microsoft excel* pada taraf signifikasi P < 0,05

Pada Tabel 2 menunjukkan bahwa total betasianin tertinggi diperoleh pada waktu ektraksi 5 menit dengan daya 100 watt sebesar 20,56mg/100g, sedangkan yang terendah pada waktu ektraksi 7 menit dengan daya 300 watt sebesar 15,51mg/100g. Pada penelitian ini kombinasi waktu ektraksi 5 menit dengan daya 100 watt memperoleh total betasianin maksimal. Hal ini dikarenakan perlakuan tersebut cukup optimal untuk melepaskan betasiani ke dalam pelarut. Waktu ektraksi 3 menit belum cukup efektif, dan waktu ekstraksi 7 menit dengan daya 300 watt menurunkan total betasianin yang diperoleh. Penambahan waktu ekstraksi dan daya menyebabkan suhu di dalam *microwave* bertambah panas, hal ini yang menyebabkan degradasi betasianin. Oleh karena itu, kombinasi waktu dan daya harus disesuaikan agar tidak merusak senyawa aktif seperti betasianin yang sensitif terhadap suhu tinggi (Hidayat et al., 2022; Saman et al., 2015).

Tingkat Kemerahan (a*)

Hasil sidik ragam menunjukkan bahwa perlakuan waktu dan daya *microwave* berpengaruh nyata, (P<0,05), interaksi antar perlakuan berpengaruh sangat nyata (P<0,01) terhadap tingkat kemerahan (a*) . Nilai rata-rata tingkat kemerahan (a*) pada ekstrak bunga bugenvil dengan metode MAE dapat dilihat pada Tabel 3.

Tabel 3. Nilai rata-rata tingkat kemerahan (a*) ekstrak pewarna alami bunga bugenvil dengan metode MAE pada perlakuan waktu dan daya *microwave*

Waktu	Daya		
	100 watt	300 watt	
3 menit	$28,02 \pm 0,57c$	$29,56 \pm 0,18$ ab	
5 menit	$30,31 \pm 0,11a$	$27,23 \pm 0,23$ cd	
7 menit	$26,35 \pm 0,71$ de	$25,03 \pm 0,72e$	

Keterangan: Huruf kecil yang berbeda di belakang nilai rata-rata menunjukkan perbedaan signifikan secara statistik berdasarkan uji lanjut DMRT pada *microsoft excel* pada taraf signifikasi P < 0,05

Tingkat Kekuningan (b*)

Hasil sidik ragam menunjukkan bahwa perlakuan waktu dan daya *microwave* berpengaruh sangat nyata (P < 0.01), interaksi antar perlakuan waktu dan daya *microwave* berpengaruh sangat nyata (P < 0.01) terhadap tingkat kekuningan (P < 0.01). Nilai rata-rata tingkat kekuningan (P < 0.01) pada ekstrak bunga bugenvil dengan metode MAE dapat dilihat pada Tabel 4.

Tabel 4. Nilai rata-rata tingkat kekuningan (b*) ekstrak pewarna alami bunga bugenvil dengan metode MAE pada perlakuan waktu dan daya *microwave*.

Waktu	Daya		
	100 watt	300 watt	
3 menit	$17,45 \pm 0,52$ de	$17,58 \pm 0,50$ cd	
5 menit	$16,06 \pm 0,17e$	$18,34 \pm 0,26$ bc	
7 menit	$18,64 \pm 0,13b$	$19,47 \pm 0,80$ a	

Keterangan: Huruf kecil yang berbeda di belakang nilai rata-rata menunjukkan perbedaan signifikan secara statistik berdasarkan uji lanjut DMRT pada *microsoft excel* pada taraf signifikasi P < 0,05

Nilai b* terendah diperoleh pada waktu ekstraksi 5 menit dengan daya 100 watt sebesar 16,06, sedangkan nilai tertinggi pada waktu ekstraksi 7 menit dengan daya 300 watt sebesar 19,4. Nilai kekuningan meningkat seiring dengan waktu dan daya yang lebih tinggi yang menimbulkan panas yang lebih tinggi sehingga betasianin terdegradasi dan membentuk asam betalamat. Hal ini juga dinyatakan dalam penelitian Agne (2010) dan Sugiastawa (2021) bahwa warna kekuningan tersebut menunjukkan struktur betasianin terurai menjadi siklo-DOPA 5-Oglikosida dan asam betalamat. Warna kuning yang terlihat adalah warna dari asam betalamat.

Kapasitas Antioksidan

Hasil sidik ragam menunjukkan bahwa waktu dan daya *microwave* berpengaruh sangat nyata (P < 0,01) terhadap kapasitas antioksidan ekstrak pewarna alami bunga bugenvil. Nilai rata-rata kapasitas antioksidan dapat dilihat pada Tabel 5.

Tabel 5. Nilai rata-rata kapasitas antioksidan (mg GAE/100g) ekstrak pewarna alami bunga bugenvil dengan metode MAE pada perlakuan waktu dan daya *microwave*

Waktu	Daya	
	100 watt	300 watt
3 menit	$331,57 \pm 21,33c$	$306,26 \pm 2,46$ cd
5 menit	$495,27 \pm 2,69a$	$420,27 \pm 31,06$ ab
7 menit	$269,60 \pm 5,42e$	$246,89 \pm 4,77e$

Keterangan: Huruf kecil yang berbeda di belakang nilai rata-rata menunjukkan perbedaan signifikan secara statistik berdasarkan uji lanjut DMRT pada *microsoft excel* pada taraf signifikasi <0,05

Kapasitas antioksidan tertinggi pada penelitian ini diperoleh pada waktu ekstraksi 5 menit dengan daya 100 watt sebesar 495,27mg GAE/100g, sedangkan terendah pada waktu ekstraksi 7 menit dengan daya 300 watt sebesar 246,8927mg GAE/100g. Kapasitas antioksidan tertinggi sejalan dengan hasil total betasianin tertinggi (Tabel 2) dan tingkat kemerahan (a*) (Tabel 3), dimana total betasianin tertinggi dan tingkat kemerahan tertinggi menunjukkan kadar antioksidan tertinggi. Betasianin diketahui berperan sebagai antioksidan alami (Tesoriere et al., 2009). Ketepatan waktu ekrtraksi dan daya *microwave* sangat mempengaruhi optimalisasi ekstraksi warna bunga bugenvile agar tidak mengalami degradasi yang dapat mempengaruhi kadar antioksidan ekstrak bunga

bugenvile Oleh karena itu, kombinasi waktu dan daya yang tepat penting diketahui untuk memaksimalkan kapasitas antioksidan ekstrak bunga bugenvil.

KESIMPULAN

Kesimpulan

Interaksi antara waktu ekstraksi dan daya *microwave* berpengaruh sangat nyata terhadap rendemen bunga bugenvil, total betasianin, tingkat kekuningan (b*) dan kapasitas antioksidan. Waktu ekstraksi dan daya *microwave* perpengaurh nyata terhadap tingkat kemerahan (a*) pada metode *Microwave Assisted Extraction* (MAE).Perlakuan terbaik untuk menghasilkan ekstrak pewarna alami bunga bugenvil yaitu kombinasi waktu ekstraksi 5 menit dan daya 100 watt dengan karakteristik rendemen sebesar 56,26%, total betasianin 20,56mg/100g, tingkat kemerahan (a*) 30,31, tingkat kekuningan (b*) 16,06 dan kapasitas antioksidan 495,27 mg GAE/100g

DAFTAR PUSTAKA

- Blois, M. 1958. *Antioxidant eterminations by the use of a stable free radical. Nature*, 181: 119-1200. http://doi.org/10.1038/1811199a0
- De Garmo, E. P., Sullivian, W. G., dan Canada, J. R. (1984). *Engineering Economy*. New York: Macmillan.
- Eder, R., dan Scherz, H. 1997. *Colorants in Foods: Their Significance for Nutrition and Health*. In G. A. Tucker & J. M. K. Smith (Eds.), *Food Biotechnology* (pp. 239–260). Springer.
- Elik, A., Koçak Yanık, D., dan Gögüş, F. 2017. Optimization of microwave-assisted extraction of phenolics from organic strawberry using response surface methodology. Harran Tarım ve Gıda Bilimleri Dergisi, 21(2), 143–154.
- Herbach, K. M., Stintzing, F. C., dan Carle, R. 2016. *Betalain stability and degradation—Structural and chromatic aspects. Journal of Food Science*, 71(4), R41–R50.
- Kamaluddin, A., Sutrisno, S., dan Khasanah, L. U. 2015. Stabilitas pigmen betasianin terhadap pemanasan dan cahaya. *Jurnal Teknologi Pangan*, 8(2), 47–53.
- Puspitasari, N., Pratiwi, M. A., dan Wartini, N. M. 2024. Ekstraksi senyawa bioaktif bunga rosela dengan metode MAE. *Jurnal Teknologi Pangan*, 12(1), 45–52.
- Pramudika, R. P. 2023. Efektivitas variasi daya *microwave* terhadap kualitas ekstrak pewarna alami dari bit merah (*Beta vulgaris*). *Jurnal Sains Terapan*, 9(1), 21–28.
- Pratiwi, M. A., Puspitasari, N., dan Wartini, N. M. 2023. Optimalisasi metode MAE untuk ekstraksi pigmen dari tanaman tropis. *Jurnal Teknologi Pertanian Tropis*, 9(1), 12–20.
- Sandy, R. N., Wijayanti, I., dan Pratama, H. A. 2021. Pengaruh variasi daya microwave terhadap kestabilan warna ekstrak betalain dari buah bit (*Beta vulgaris* L.). *Jurnal Teknologi Hasil Pertanian*, 14(2), 89–96.
- Saman, R., Yuliana, N. D., dan Rachmawati, H. 2015. *Microwave-assisted extraction for natural products isolation: A green chemistry approach. Jurnal Teknologi Industri Pertanian*, 25(3), 245–252.
- Sudarmadji, S., Haryono, B., dan Suhardi. 1989. *Prosedur Analisa untuk Bahan Makanan dan Pertanian*. Liberty, Yogyakarta.
- Tesoriere, L., Allegra, M., Butera, D., dan Livrea, M. A. 2019. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: Potential health effects. *The American Journal of*

Clinical Nutrition, 90(1), 79–85.

Weaver, C. M. 1996. Food Chemistry and Nutritional Value of Pigments., 61(1), 4-6.