

Analysis of Heavy Equipment Usage for Inlet Conduit Work on Cijurey Dam Project Package 1

Ega Dwi Prasetyo^{1*}, Ekodjati Tunggulgeni¹, Anasya Arsita Laksmi¹

¹Republic of Indonesia Defense University, Bogor, Indonesia ¹

*E-mail address: egaageprasetyo@gmail.com1

ABSTRACT

Earth excavation work is inseparable from the use of heavy equipment, where job performance is expected to be completed quickly and at minimal cost. Therefore, it is necessary to calculate equipment productivity to determine the most efficient combination of heavy equipment. The productivity of heavy equipment is determined based on the cycle time of each tool, which varies depending on the size of the equipment and the type of material being handled. The method used involves comparing the productivity of heavy equipment by observing the cycle time required to complete the work. The productivity comparison results are then used to determine the most efficient equipment needs and the estimated costs required to complete the job. Equipment fleet efficiency can be achieved when the difference in productivity between tools is significantly large. This efficiency affects the project's duration, equipment costs, or both. In this study, the efficiency of heavy equipment in the earth excavation work of the Cijurey Dam inlet area is analyzed through a change in equipment combination, from two excavators and four dump trucks to three excavators and four dump trucks. The results show that this new equipment fleet combination (fleet 3) leads to a work time acceleration of up to 80 working hours and a cost reduction of Rp97,543,226.67. Therefore, selecting the right combination of heavy equipment plays a crucial role in improving the efficiency of both time and cost in earth excavation projects.

Keywords: Cycle Time, Dam, Efficiency, Heavy Equipment, Productivity

1. INTRODUCTION

One of the government's efforts to support the Indonesian people is through dam construction, which plays a crucial role in ensuring sustainable water resources. These dams are designed to preserve both the quality and quantity of water, allowing long-term use without degradation. Dams serve as a vital source of clean water for communities, not only for everyday needs but also for agriculture. Sufficient access to clean water contributes significantly to better public health and enhances overall living standards. The Cijurey Dam, for example, was built in response to the recurring floods of the Citarum River, which often overflowed due to increasing water volume.

Several factors drove the decision to construct the Cijurey Dam. The frequent and severe flooding in areas such as Karawang and Bekasi posed a serious threat. In addition, population growth and economic development in the region have increased demand for water and electricity. The high hydroelectric potential of the Cijurey River also offers an opportunity to produce clean energy and reduce reliance on fossil fuels. With full government support, the

project has become a national priority. The overarching aim is to balance energy and water demands with environmental preservation.

Within dam construction, the inlet plays a vital role as it regulates incoming water flow, ensuring structural stability and water distribution. The inlet work is categorized as critical and influences the design of the entire dam. Activities such as excavation using equipment like excavators, breakers, and dump trucks must be optimized to prevent project delays. Therefore, this study focuses on analyzing the use of heavy equipment in the excavation of the dam inlet, particularly in terms of equipment quantity and cost-effectiveness in the field.

2. THEORY AND METHODS

2.1 Theory

2.1.2 Heavy Equipment

In earth excavation work, a KOBELCO SK 200 excavator is used, equipment with a 0,8 m³ bucket. According to [4], the excavator's cycle time consists of four components (Excavating time, Loaded swing time, Dumping time, Empty swing time). The formula for excavator cycle time is shown in Equation (2.1)

$$C_{ms} = t_m + t_{pb} + t_b + t_{pk} (2.1)$$

Informations:

 C_{ms} = excavator cycle time (s) t_b = dumping time (s) t_{m} = bucket loading time (s) t_{pk} = empty swing time (s)

 t_{pb} = loaded swing time (s)

According to [4], a dump truck is a vehicle used to transport materials such as soil, sand, and other construction materials that have been loaded by an excavator into the rear bed, over medium to long distances (500 meters or more). The cycle time can be seen in Equation (2.2).

$$C_{mt} = (n \times C_{ms}) + t_a + t_b + t_k + t_c \tag{2.2}$$

Informations:

 $\begin{array}{lll} C_{mt} &= Dump \ truck \ cycle \ time \\ n &= Number \ of \ cycles \ required \ by \ the \\ excavator & t_k &= Return \ time \\ C_{ms} &= Excavator \ cycle \ time & t_c &= Queuing \ time \\ \end{array}$

2.1.3 Equipment Productivity

The productivity of an excavator, dump truck, and based on volume can be calculated using Equation (2.3):

$$Q = \frac{(q \times 3600 \times E)}{Cms} \quad ; \qquad Q = \frac{(C \times 60 \times E \times N)}{Cmt} \quad ; \qquad Q = \frac{Vt}{tk}$$
 (2.3)

Informations:

Q = Production per hour (m³/hour) N = Number of dump trucks operating
q = Production per cycle (m³) Cmt = Dump truck cycle time (minutes)
E = Work efficiency Vt = Volume at disposal area (m³)
Cms = Excavator cycle time (seconds) tk = Working time (hours)

2.1.4 Tool Cost

Tool costs are divided into two categories: ownership costs and operating costs.

The depreciation formulas are shown in Equations (2.8) and (2.9).

$$Dk = R \times (1 - R)^{(k-1)} \times P$$
 (2.8)

$$Bk = (1 - R)^{(k-1)} \times P$$
 (2.9)

Where:

 $\begin{array}{lll} Dk &= Annual \ depreciation \ at \ the \\ beginning \ of \ the \ year & k &= Year \ number \\ Bk &= Annual \ depreciation \ at \ the \ end \ of \\ the \ year & P &= Equipment \ price \end{array}$

2.1.4.2 Ownership Cost

Ownership cost is calculated by summing depreciation cost, capital interest, insurance, and tax. Depreciation cost is obtained by subtracting the salvage value from the equipment price (excluding tires), then dividing by total operating hours [7].

Capital interest, insurance cost, tax cost is calculated using Equation (2.11):

$$A = \frac{\frac{N+1}{2N}xc2xZ1}{U}; B = \frac{\frac{N+1}{2N}xc2xZ2}{U}; C = \frac{\frac{N+1}{2N}xc2xZ3}{U} (2.11)$$

Where:

A = Capital interest cost (Rp/hour)

N = Equipment economic life (years)

C2 = Equipment price excluding tires

(Rp)

U = Total operating hours

B = Insurance cost (Rp/hour)

Z2 = Insurance rate (%)

C = Tax cost (Rp/hour)

Z3 = Tax rate (%)

2.1.4.3 Operating Cost

Operating cost is calculated by summing the operator wage, assistant operator wage, fuel consumption, lubricant consumption, workshop cost, and maintenance cost [9]. All values are expressed in rupiah per hour to obtain the total operating cost per hour.

2.2 Methods

This study is a work study that analyzes heavy equipment productivity through direct field data collection. The observation process follows the flow shown in Fig. 1, beginning with recording 30 cycle time samples through direct observation and measuring excavation volumes based on surveyor reports at the disposal area. Field productivity data is then compared with theoretical productivity based on AHSP standards from the Indonesian Ministry of Public Works. A one-way ANOVA test is used to determine whether there is a significant difference between field productivity and theoretical standards from two unrelated data groups. Continued to calculate the analysis of heavy equipment use by comparing productivity between heavy equipment used to then determine the more optimal heavy equipment *fleet* to use.

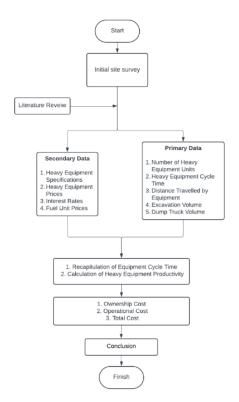


Fig. 1 Flowchart of research impementation

3. RESULTS AND DISCUSSION

In its implementation, 30 samples of cycle time of each working tool were taken. Cycle time data can be seen from Table 1.

Table 1. Heavy Equipment Cycle Time Data

			abic 1.	11cavy	Lquipii	ichi Cyt		CData			
Tool			Sample								
		1	2	3	4	5	6	7	8	9	10
Excavator (s)		18	19	19	15	18	17	16	20	15	19
Dump (minutes)	truck	17,90	18,18	17,62	13,92	14,40	13,18	13,23	22,32	13,70	21,27
Tool		Sample									
1 001		11	12	13	14	15	16	17	18	19	20
Excavator (s)		15	17	17	16	17	18	15	15	17	18
Dump (minutes)	truck	13,58	21,27	17,90	13,23	17,62	22,32	13,70	14,40	13,92	18,18
Tool		Sample									
1 001		21	22	23	24	25	26	27	28	29	30
Excavator (s)		17	15	17	18	16	20	21	15	19	15
Dump (minutes)	truck	13,18	17,62	13,58	22,32	18,18	14,40	13,18	13,92	17,90	13,23

The average cycle time values from the obtained data are:

- 1. *The excavator* has a cycle time of 17.13 seconds.
- 2. *Dumptruck* has a cycle time of 16.31 minutes.

Figure 2. Heavy Equipment Fleet

By conducting a data homogeneity test using the one-way anova method, the cycle time that appears can be used as the basis for calculation. The one-way anova homogeneity test produces data as shown in Table 2.

Table 2. Anova Test

1 = 1 1 1110 1 0 2 0								
SK	JK	db	KT	F _{count}	F _{table}			
Treatment	10,127	1	10,127	1,527	4,007			
Error	384,426	58	6,628					
Total	394,553	59						

Based on the one-way ANOVA test, the F value is lower than the F table, indicating acceptance of H0 and data homogeneity. Subsequent calculations using PUPR Regulation No. 1 of 2022 determined the productivity of the excavator and dump truck (Table 3).

Table 3. Heavy Equipment Tool Productivity

Aspect	Type and coefficient	Unit	Aspect	Type and coefficient	Unit		
	Excavator		Dump Truck				
Туре	Cobelco SK 200		Brand	HINO 500 FM 260 TI			
Capacity	0,8	m^3	Туре	HINO 500 FM 260 TI			
Buquet Factor (BFF)	0,9		Capacity	25	m^3		
Working Efficiency (E)	0,83		Efisiency Factor	0,83			
Working Hours/Day	8	hours	Distance	1000	m		
Soil Type	Clay		Tool Condition	Good			
Digging time	5,80	S	Excavator capacity	79,472	m ³ /hour		
Turning time	5,00	S	Excavator cycle time	0,286	Min		
Exhaust time	2,60	S	DT Cycle time	16,31	min		
Tool rotating angle	90	0	Productivity	42,403	m ³ /hour		
Production/cycle (P)	0,72	m^3	Productivity/day	339,225	m ³ /day		
Cycle time (CT)	17,13	S					
	0,29	min					
Hourly production	(VxFbxFax60) / (Ts ₂ xFk)						
	79,47	m^3/h					
Production/day	635,78	m ³ /day					

From the total volume of excavation results, namely 30250 m³ divided by 240 working hours, the productivity of the excavator in the field is 126,042 m³/hour with the number of excavators as many as two pieces. The dump truck field productivity value is 193,427 m³/hour for four dump trucks. With the comparison of plan productivity and field productivity, the efficiency of heavy equipment comparison can be seen in Table 4.

Table 4. Comparison of Tool Productivity

N.T.			Comparison (unit)			
No	Tool Type	Productivity (m ³ /hour)	Excavator	Dump truck		
1	Excavator	63,021	1	1,30		
2	Dumptruck	48,357	1	1,50		

The comparison result show that efficiency can be achieved by changing the heavy equipment fleet, as long as the change reduces time and cost, which is calculated based on the hourly cost after 1,25% depreciation using the declining balance method (Table 5).

Table 5. Depreciation

	Table 3. Depresion									
	Excavat	or	Dump Truck							
k	Dk	Bk	k	Dk	Bk					
0		Rp1.500.000.000	0		Rp1.283.000.000					
1	Rp375.000.000	Rp1.125.000.000	1	Rp320.750.000	Rp962.250.000					
2	Rp281.250.000	Rp843.750.000	2	Rp240.562.500	Rp721.687.500					
3	Rp210.937.500	Rp632.812.500	3	Rp180.421.875	Rp541.265.625					
4	Rp158.203.125	Rp474.609.375	4	Rp135.316.406	Rp405.949.219					
5	Rp118.652.344	Rp355.957.031	5	Rp101.487.305	Rp304.461.914					

Price calculations refer to the Bogor Regent Regulation 2024 and field prices, with equipment cost divided into ownership and operational costs, where details of ownership costs are presented in Table 6.

Table 6. Ownership Cost

No	Aspek		Excavator			Dump Truck		
110			Coef	Unit	%	Coef	Unit	
	a. Tool Price (including attachment)		Rp1.500.000.000			Rp1.283.000.000		
1	b. Tire price		-	tracksoe		Rp500.000.000		
	c. Tool price without tire		Rp1.500.000.000			Rp783.000.000		
	Residual value	0			30	Rp384.900.000		
2	Residual value of equipment (DBM)		Rp355.957.031					
2	a. Tool cost over lifetime		Rp1.500.000.000			Rp398.100.000		
3	b. Depreciation		Rp95.336,91			Rp33.175		
	Capital interest		Rp45.000	/hour		Rp11.745	/hour	
4	Isurance		Rp5.625	/hour		Rp2.936,25	/hour	
	Tax		Rp18.750	/hour		Rp9.787,50	/hour	
	Total Owning Cost		Rp164.711,91	/hour		Rp57.643,75	/hour	

Based on the cost of ownership, the detailed calculation of equipment operating costs can be seen in Table 7.

Table 7. Operating Costs

Aspect	V	alue
Aspect	Excavator	Dumptruck
Fuel Comsumption	Rp237.000	Rp87.150
Lubricating Oil Consumption	Rp25.272	Rp41.587
Workshop Cost	Rp17.500	Rp14.968
Maintenance Cost	Rp56.250	Rp48.113
Operator Cost	Rp43.179	Rp43.179
Helper Cost	Rp26.169	Rp26.169
Total Operational Cost	Rp168.370	Rp174.016

From the above calculations, it can be analyzed the hourly cost requirements of the heavy equipment fleet. The calculation on the heavy equipment fleet can seen in Table 8.

Table 8. Cost of Fleet

					1	•	1									
Fleet	Туре	Unit	Productivi ty (m3/h)	Producviti vy x Unit (m3/h)	Combinati on (m3/h)	Cost/h our (Rp)	Cost/hour x Unit (Rp)	Total Cost Combination								
1	Excavato r	2	63,02	126,042		561.400	1.122.799,83	Rp2.342.090,16								
	Dumptru ck	4	48,357	193,427	126,042	304.823	1.219.290,33	Kp2.342.090,10								
	Excavato r	2	63,02	126,042	126,042	561.400	1.122.799,83	Rp2.037.267,58								
2	Dumptru ck	3	48,357	145,070	120,042	304.823	914.467,75	Kp2.037.207,38								
3	Excavato r	3	63,021	189,063	190.062	561.400	1.684.199,74	D=2 002 400 08								
	Dumptru ck	4	48,357	193,427	189,063	304.823	1.219.290,33	Rp2.903.490,08								

The total cost and working time required for each of the three heavy equipment fleets to complete the work were calculated and are presented in Table 9.

Table 9. Fleet Efficiency

Fleet	1	2	3
Combination Productivity (m^3/h)	126,042	126,042	189,063
Excavation Volume	30250	30250	30250
JTotal working hours	240	240	160
Total of work weeks	3	3	2
Cost of combination	Rp562.101.639	Rp488.944.219	Rp464.558.412

With the same work volume, a comparison of heavy equipment fleets reveals differences in cost efficiency and working time. Fleet 1 (field conditions) took 240 hours at a cost of Rp562,101,639. Fleet 2, a simulation with fewer dump trucks, reduced the cost to Rp488,944,219 without changing working time, as excavator productivity remained the key

factor. Fleet 3, simulated with more excavators (three excavators and four dump trucks), shifted the determining factor to dump trucks, cutting working time to 160 hours and cost to Rp464,558,412. This fleet combination improves work efficiency and project sustainability.

4. CONCLUSIONS

Based on the analysis results, it can be concluded that the excavation work in the soil inlet area of the Cijurey Dam Package 1 can still be carried out efficiently using heavy machinery, with fleet 3 consisting of 3 excavators and 4 dump trucks identified as the most efficient combination, resulting in a work execution time of 80 hours and a cost efficiency of IDR 97,543,226.67; this finding provides a practical reference for optimizing heavy equipment planning in similar dam construction projects and offers a foundation for further research in improving operational efficiency in Civil Engineering practices.

5. ACKNOWLEDGEMENTS

The authors extend their sincere gratitude to PT. Brantas for providing the opportunity to conduct research at the Cijurey Project.

REFERENCES

- [1] Keselamatan, Kesehatan, Dan Lingkungan Kerja Pada Pekerjaan Galian Tanah Basement. *Jurnal Dimensi Pratama* ..., 67–74.
- [2] Fatihah, N. (2023). Dasar Teori Skripsi Dinding Penahan Tanah.
- [3] Octavia, D. M., Mardhiyah, R., & Utami, C. (2021). Analisis Kombinasi *Excavator* dan *Dump Truck* pada Pekerjaan Galian Tanah (Studi Kasus: Proyek Pembangunan Kampus III UIN Imam Bonjol Padang). *Jurnal Teknik Sipil ITP*, 8(2), 4.
- [4] Ramadhan, Y., & Nugraha, T. (2018). Optimalisasi Penggunaan Alat Berat Pada Pekerjaan Galian Tanah (Studi Kasus Proyek Perumahan Fortune Villa Graha Raya). *Widyakala Journal*, *5*(1), 17.
- [5] PT. United Tractor Tbk. (2020). Manajemen Alat Alat Berat. *Teknik Mesin ITN Malang*, 189, 1–189.
- [6] Ir.Ali Arifin Soeparlan, M. . dan M. H. M. . (2019). Analisa Produktivitas Pekerjaan Galian Menggunakan Alat Berat Pada Proyek Pembangunan Di Balikpapan.
- [7] Vahlevi, R., & Widayati, S. (2016). Owning Cost dan Operating Cost pada Penambangan Nikel Dipt Fajar Bhakti Lintas Nusantara Sub-Kontraktor PT Sinar Karya Mustika Desa Elevanun, Kecamatan Pulau Gebe, Kabupaten Halmahera Tengah, Provinsi Maluku Utara. *Prosiding Teknik Pertambangan*, 0(0), 431–439.
- [8] Ir. Susy Fatena Rostiyani, M. S. (2008). ALAT BERAT UNTUK PROYEK KONSTRUKSI. In *Sustainability (Switzerland)* (Vol. 11, Issue 1).
- [9] Wattimena, M., Witjaksana, B., & Teknik, F. (2023). *Jurnal Ilmiah Teknik dan Manajemen Industri*. 534–547
- [10] Arm, S., Shoe, W., Max, A., & Radius, R. (2020). Power Meets Efficiency. 81(0).
- [11] Baktiar, A. Y. (2019). Analisa Produktivitas Penggunaan Alat Berat pada Pekerjaan Tanah dan Pondasi pada Proyek Pembangunan Gedung Pendidikan Profesi Guru Universitas Malang. *Sustainability (Switzerland)*, 11(1), 1–14.

- [12]Bogor, P. K. (2024). PEMERINTAH KABUPATEN BOGOR KEPUTUSAN BUPATI BOGOR.
- [13] Kusrin, S.T, M. . (2008). Pemindahan Tanah Mekanik dan Alat Berat (pp. 1–104).
- [14] Prasmoro, A. V., & Hasibuan, S. (2018). Optimasi Kemampuan Produksi Alat Berat Dalam Rangka Produktifitas Dan Keberlanjutan Bisnis Pertambangan Batubara: Studi Kasus Area Pertambangan Kalimantan Timur. *O p e r a t i o n s E x c e l l e n c E*, *10*(1), 1–16.
- [15] PUPR, K. (2023). Peraturan Menteru Pekerjaan Umum dan Perrumahan Rakyat Republik Indonesia Nomor 1 Tahun 2022.
- [16] Siswanto, B. T. (2013). Teknik Alat Berat. *Journal of Chemical Information and Modeling*, 53(9), 1689–1699.