



# **Seismic Design for Infrastructures**

I Wayan Redana<sup>1\*</sup>, I Made Aryatirta Predana<sup>1</sup>, I Ketut Sudarsana<sup>1</sup>, I Kadek Edy Suhendrawan<sup>1</sup>

<sup>1</sup>Department of Civil Engineering, Faculty of Engineering, Udayana University, Bali, Indonesia

\*E-mail address: <u>iwayanredana@yahoo.com</u>

#### **ABSTRACT**

Seismic design for infrastructures such as building and non-building is designed based on design ground shaking shall be characterized by the design spectrum. This study aims to evaluate seismic design for infrastructures following SNI 1726-2019 with the site investigation results. Several site investigations are taken by conducting boring to a depth of 30 m to count the soil site classification based on Standard Penetration Testing (N value) and laboratory testing. The site is located around Jimbaran and Kuta area, in Badung regency, Bali. It can be summarized that the area of of soil investigation taken from four sites in this Jimbaran and Kuta area reveal soil site classification as SC (hard soil, very solid and soft rock) and SD (medium soil) and SE (soft soil). Maximum earthquake parameters in Bali, Indonesia Ss = 0.9 to 1.0g, S1=0.3 to 0.4g, PGA = 0.4 to 0.5g, with risk coefficient CRS=1 to 1.05 for respond spectral period of 0.2 second and CR1=0.95 to 1 for respond spectral period of 1 second. In conclusion, SNI 1726-2019 provides site classification for seismic design of infrastructures and site investigation shows the good agreement with the national standard.

**Keywords:** Seismic design, infrastructure, site investigation.

# 1. INTRODUCTION

This study aims to evaluate seismic design following SNI 1726-2019, which is the standard of earthquake resistance planning procedures for building and non-building structures [1]. Ground shaking is evaluated by the design spectrum of soil. Information of ground strength is necessary. Soil characteristics, soil consistency are primarily important. According to Caltrans, soil is categorized as S1 and S2 depending on its properties and classified soil as types A, B, C, D, E, and F [2]. According to SNI 1726-2019, soil has characteristics as SA (hard rock), SB (rock), SC (hard soil, very solid and soft rock), SD (medium soil), SE (soft soil), and SF (special soils that require specific geotechnical investigations and response analysis).

Several site investigations by drilling and testing are conducted in order to evaluate site classes to the proposed infrastructures. The drilling bore hole is taken up to 30 meter in depth and completed with Standard Penetration Testing (N value) and laboratory testing [3]. The site is located around Jimbaran and Kuta area, in Badung regency, Bali province, Indonesia.

#### 2. THEORY AND METHODS

# 2.1 Seismic Design

Seismic design for building and non-building in Indonesia should follow SNI 1726-2019. SNI 1726-2019 categorized soil as SA/hard rock, SB/rock, SC/hard soil, very solid and soft rock, SD/medium soil, SE/soft soil, and SF/special soils that require specific geotechnical investigations and response analysis [1].

Caltrans (2019) characterized soil as class S1 and class S2 soil. Soils with all the following characteristics shall be classified as Class S1: Standard penetration test,  $(N1)60 \ge 30$  (Granular soils), Undrained shear strength, su > 2000 psf (Cohesive soils), Shear wave velocity, vs > 886 ft/sec, Not susceptible to liquefaction, lateral spreading, or scour. where: (N1)60 = penetration resistance corrected for overburden pressure and hammer efficiency. Any soil that does not satisfy the requirements of Class S1 shall be classified as "Class S2." Lateral analysis shall be required for foundations in Class S2 soils. Caltrans (2019) also classified soil as types A, B, C, D, E, and F [2].

Table 1. Site Classification

| Site Class                                                                                 | $\overline{v}_s(m/\det ik)$                                                                                                                                                                            | $\overline{N}atau\overline{N}_{ch}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\overline{s}_u(kPa)$                                                                          |  |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| SA (hard rock)                                                                             | >1500                                                                                                                                                                                                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                            |  |  |  |
| SB (rock)                                                                                  | 750 - 1500                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                            |  |  |  |
| SC (hard soil, very solid and soft rock)                                                   | 350 - 750                                                                                                                                                                                              | >50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ≥100                                                                                           |  |  |  |
| SD (medium soil)                                                                           | 175 - 350                                                                                                                                                                                              | 15 - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 - 100                                                                                       |  |  |  |
| SE (soft soil)                                                                             | <175                                                                                                                                                                                                   | <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <50                                                                                            |  |  |  |
|                                                                                            | Or any soil profile containing more than 3 m of soil with the following characteristics:  1. Plasticity Index, $PI > 20$ 2. Water content $w \ge 40\%$ 3. Undrained shear strength $\bar{s}_u < 25kPa$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |  |  |  |
| SF (special soils that require specific geotechnical investigations and response analysis) | <ul> <li>Vulnerable and has such as susceptible soil</li> <li>Very organic clay at Clay with very high PI&gt;75)</li> </ul>                                                                            | at has one or more of the following the potential to fail or collar to liquefaction, very sensite and/or peat (thickness H>3mgh plasticity (thickness H>7mgh player with thickness H>7mgh play | pse due to earthquake loads<br>rive clay, weakly cemented<br>a)<br>7.5 m with plasticity index |  |  |  |

## 2.2 Response Spectrum Design

According to SNI 1726-2019, to determine the spectral response of MCE<sub>R</sub> earthquake acceleration at the ground surface, a seismic amplification factor is required at a period of 0.2 seconds and a period of 1 second [1]. Amplification factors include acceleration-related vibration amplification factors for short period vibrations ( $F_a$ ) and acceleration-related amplification factors representing 1 second period vibrations ( $F_v$ ). Acceleration spectral response parameters in short periods ( $S_{MS}$ ) and 1 second periods ( $S_{MI}$ ) which are adjusted to the influence of site classification, must be determined using the following formulation:

$$S_{MS} = F_a S_s \tag{1}$$

$$S_{M1} = F_v S_1 \tag{2}$$

With site coefficients  $F_a$  and  $F_v$  following Table 2 and Table 3.

|            | Table 2: Site coefficient, 1 a |                                                                                                                                                                        |              |             |              |               |  |
|------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------|---------------|--|
| Site class |                                | The maximum considered risk-targeted earthquake acceleration spectral response (MCE <sub>R</sub> ) parameters are mapped to the short period, $T = 0.2$ seconds, $S_s$ |              |             |              |               |  |
|            | $S_s \le 0.25$                 | $S_s = 0.5$                                                                                                                                                            | $S_s = 0.75$ | $S_s = 1.0$ | $S_s = 1,25$ | $S_s \ge 1.5$ |  |
| SA         | 0,8                            | 0,8                                                                                                                                                                    | 0,8          | 0,8         | 0,8          | 0,8           |  |
| SB         | 0,9                            | 0,9                                                                                                                                                                    | 0,9          | 0,9         | 0,9          | 0,9           |  |
| SC         | 1,3                            | 1,3                                                                                                                                                                    | 1,2          | 1,2         | 1,2          | 1,2           |  |
| SD         | 1,6                            | 1,4                                                                                                                                                                    | 1,2          | 1,1         | 1,0          | 1,0           |  |
| SE         | 2,4                            | 1,7                                                                                                                                                                    | 1,3          | 1,1         | 0,9          | 0,8           |  |
| SF         |                                | SS <sup>(a)</sup>                                                                                                                                                      |              |             |              |               |  |

**Table 2.** Site coefficient,  $F_a$ 

**Table 3.** Site coefficient,  $F_{\nu}$ 

| Site class | The maxin     | The maximum considered risk-targeted earthquake acceleration spectral response (MCE $_{\rm R}$ ) parameters are mapped in period 1 seconds, $S_1$ |             |                  |             |               |
|------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-------------|---------------|
|            | $S_1 \le 0,1$ | $S_1 = 0.2$                                                                                                                                       | $S_1 = 0.3$ | $S_1 = 0.4$      | $S_1 = 0.5$ | $S_1 \ge 0.6$ |
| SA         | 0,8           | 0,8                                                                                                                                               | 0,8         | 0,8              | 0,8         | 0,8           |
| SB         | 0,8           | 0,8                                                                                                                                               | 0,8         | 0,8              | 0,8         | 0,8           |
| SC         | 1,5           | 1,5                                                                                                                                               | 1,5         | 1,5              | 1,5         | 1,4           |
| SD         | 2,4           | 2,2                                                                                                                                               | 2,0         | 1,9              | 1,8         | 1,7           |
| SE         | 4,2           | 3,3                                                                                                                                               | 2,8         | 2,4              | 2,2         | 2,0           |
| SF         |               |                                                                                                                                                   | SS          | S <sup>(a)</sup> |             |               |

Design spectral acceleration parameters for short periods,  $S_{DS}$  and at 1 second period,  $S_{DI}$ , must be determined through the following formulation:

$$S_{DS} = \frac{2}{3} S_{MS}$$
 (3)  
 $S_{D1} = \frac{2}{3} S_{M1}$  (4)

If a design response spectrum is required by this ordinance and a site-specific ground motion procedure is not used, then a design response spectrum curve must be developed by referring to Figure 1 and following the provisions below:

1. For periods smaller than  $T_0$ , the design acceleration response spectrum,  $S_a$ , should be taken from the equation;

$$S_a = S_{DS} \left( 0.4 + 0.6 \frac{T}{T_0} \right)$$
 (5)

- 2. For periods greater than or equal to  $T_0$  and less than or equal to  $T_s$ , the design acceleration response spectrum,  $S_a$ , is the same as  $S_{DS}$ ;
- 3. For periods greater than  $T_s$  but less than or equal to  $T_L$ , the design acceleration spectral response,  $S_a$ , is taken based on the equation:

$$S_a = \frac{S_{D1}}{T} \tag{6}$$

4. For periods greater than  $T_L$ , the design acceleration spectral response,  $S_a$ , is taken based on the equation:

$$S_a = \frac{S_{D1}T_L}{T^2} \tag{7}$$

where:

 $S_{DS}$ = design acceleration spectral response parameter at short periods;

= design acceleration spectral response parameter at a period of 1 second;  $S_{D1}$ 

= period of fundamental vibration of the structure.

$$T_0 = 0.2 \frac{S_{D1}}{S_{D2}} \tag{8}$$

$$T_0 = 0.2 \frac{s_{D1}}{s_{DS}}$$
 (8)  
$$T_S = \frac{s_{D1}}{s_{DS}}$$
 (9)

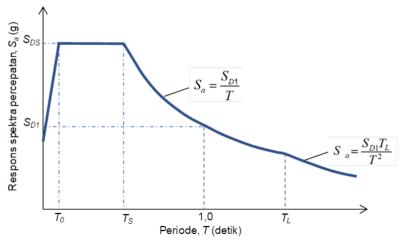


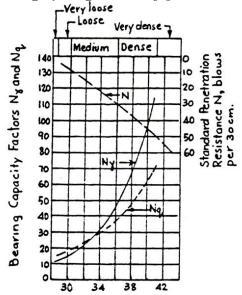

Figure 1. Design response spectrum.

## 2.3 Foundation Design

Following site classification as indicated in Table 1, evaluation of bearing capacity of foundation should follow the equation for soil and the equation for rock where applicable [4][5]. Therefore, below is given few formula to estimate bearing capacity of foundation founded on soil and foundation founded on rock.

## 2.3.1 Bearing Capacity on Soil

**Shallow Foundation** – Shallow foundation with Laboratory Shear Test values as pproposed by Terzaghi's formula [6]:


For Clay:

$$\sigma_{ult} = 1.2cN_c + \gamma D_f N_q \tag{10}$$

For Sand:

$$\sigma_{ult} = 1.2cN_c + \gamma D_f N_q + 0.5\gamma BN_\gamma \tag{11} \label{eq:ult}$$

where:  $\sigma_{ult}$  = ultimate bearing capacity; c = cohesion,  $\gamma$  = unit weight of soil;  $D_f$  = foundation depth, B = foundation width, SF= 3,  $N_c$ ,  $N_q$  and  $N_{\gamma}$  = bearing capacity factor depends on the soil friction angle  $\phi$ , values as in the graph Fig.2 below [7].



Angle of Internal Friction of degrees

**Figure 2.** Graph of the relationship between bearing-capacity factors and  $\phi$ , and the empirical relationship of the standard penetration resistance value N.

Bearing Capacity of Shallow Foundations using the corrected N value as follows:

$$\sigma_{ijin} = \frac{N}{0.05 \left(1 + 0.33 \frac{D_f}{B}\right)} \tag{12}$$

where: B = Width (<1.20 m),  $D_f = \text{Depth}$ , N = Corrected SPT value.

Peck Hanson and Tornburn (1974) suggested using a value of  $\sigma'_{v} = 100$  kPa (1 TSF) as a standard value while correcting the field N value. The corrected N value is proposed to be:

$$N_{corr} = N_{field} \ x C_N \tag{13}$$

where:  $C_N$  is correction factor,  $C_N=1$  for  $\sigma'_v=100$  kPa (1 TSF).

Peck et al (1974) proposed the following relationship:

$$p = 11.0 \, x \, N_{corr} \, (kPa) \approx q_{net \, ijin} \tag{14}$$

where:  $p = \text{net vertical pressure acting on the footing with a maximum drop of 25 mm provided that the water level is below B (B is the width of the footing).$ 

Peck et al. (1974) proposed an empirical groundwater level correction factor C<sub>W</sub> of:

$$C_W = 0.5 \left( I + \frac{D_W}{D_f + B} \right) \tag{15}$$

where:  $D_w$ = Depth of the ground water surface from the ground surface, B =Smallest foundation width,  $D_f$ = Foundation depth.

Thus the equation becomes:

$$p = 11.0 x C_W x N_{corr} (kPa) \approx q_{net iiin}$$
 (16)

## **Deep Foundations and pile Foundations**

Bearing Capacity of Pile Foundations in Clay by applyingTotal Pressure Analysis [8] End Resistance;

The ultimate bearing capacity at the end of the pile foundation is stated as below.

$$q_f = c_{\mu} N_c \tag{17}$$

where:  $c_u$  = undrained shear strength of clay,  $N_c$  = Soil bearing capacity factor  $N_c$  = 9 (based on Skempton for D/B > 4)

Friction Resistance;

The friction bearing capacity around the pile foundation is expressed as:

$$f_s = \alpha \overline{c}_{\mu} \tag{18}$$

where:  $\bar{c}_u$  = Average undrained cohesion value,  $\alpha$  = coefficient that depends on the type of clay and pile material;  $\alpha$  = 0.3 to 1.0

Bearing capacity of pile foundation by applying Effective Stress Analysis [8] End Resistance;

The end of pile foundation bearing capacity is the same as in sand

$$q_f = \sigma_o' N_q \tag{19}$$

Friction Resistance;

Skin friction resistance or friction is expressed by the following equation:

$$f_s = K\overline{\sigma}_o' \tan \phi' \quad \text{or} \quad f_s = \beta \overline{\sigma}_o'$$
 (20)

where:  $\beta = 0.25$  - 0.40 for clay and silt,  $\beta = 0.8$  for coarse and dense sand Hence, Total Bearing Capacity as Ultimate bearing capacity becomes:

$$Q_{\mu} = A_b \sigma_o' N_q + A_s \beta \overline{\sigma}_o' \tag{21}$$

The allowable bearing capacity is:

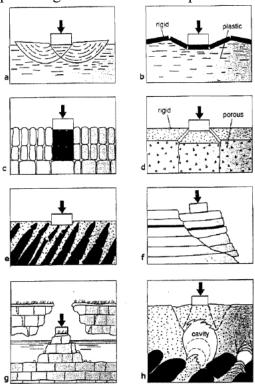
$$Q_{ijin} = \frac{Q_u}{FS} = \frac{A_b \sigma'_o N_q + A_s \beta \overline{\sigma}'_o}{3}$$
 (22)

Deep Foundations (Piles, Drilled Piles) Based on Corrected SPT Values [9]; End Resistance;

$$q_f = 40N \frac{D_b}{B} \le 400N \dots (kN/m^2)$$
 (23)

Friction Resistance;

$$f_s = 2\overline{N} \dots (kN/m^2) \tag{24}$$


Allowable Bearing Capacity;

$$Q_{ijin} = \frac{A_b.q_f}{3} + \frac{A_s.f_s}{2}.....(kN)$$
 (25)

where:  $A_b$  = Base area of the pile,  $A_s$  = Cover area (Perimeter area) of the pile.

# 2.3.2 Bearing Capacity on Rock

Bearing capacity of Shallow Foundation founded on rock might be estimated by equation as stated in Figure 3. Table 4 provide guidance to estimate pressure on rock mass [10].



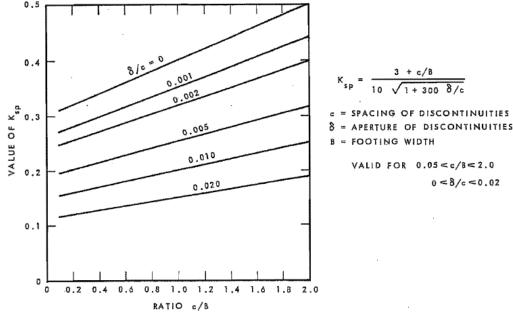
**Figure 3.** Mechanisms of foundation failure (from Franklin and Dusseault, 1989; adapted from Sowers, 1976):
a) Prandtl-type shearing in weak rock; b) shearing with superimposed brittle crust; c) compression of weathered joints; d) compression and punching of porous rock underlying a rigid crust; e) breaking of pinnacles from a weathered rock surface; f) slope failure caused by superimposed loading; g) collapse of a shallow cave; and h) sinkhole caused by soil erosion into solution cavities [6].

**Table 4.** Applicability of Methods for the Determination of Design Bearing Pressure on Rock depending upon Rockmass Quality

| Rockmass Quality                                                                         | Basis of Design Method  |
|------------------------------------------------------------------------------------------|-------------------------|
| Sound rock Rockmass with wide or very wide discontinuity spacing                         | Core strength           |
| Rockmass with closed discontinuities at moderately close, wide and very wide spacing     | Core strength           |
| Low to very low strength rock Rockmass with close or very closely spaced discontinuities | Pressure meter          |
| Very low strength rock Rockmass with very closely spaced discontinuities                 | Soil mechanics approach |

In all cases, field tests may also be used to assess the capacity and load-deformation characteristics of the rock mass [11].

The final determination of the design bearing pressure on rock may be governed by the results of the analysis of the influence of the discontinuities on the behavior of the foundation [12]. As a guideline, in the case of a rock mass with favorable characteristics (e.g., the rock surface is perpendicular to the foundation, the load has no tangential component, the rock mass has no open discontinuities) [10], the design bearing pressure may be estimated from the following approximate relation:


$$q_a = K_{sp} \times q_{u-core} \tag{26}$$

where:  $q_a$  = design bearing pressure,  $q_{u-core}$  = average unconfined compressive strength of rock (as determined from ASTM D2938),  $K_{sp}$  = an empirical coefficient, which includes a factor of safety of 3 (in terms of working stress design) and ranges from 0.1 to 0.4 (see Table 5 and Figure 4).

**Table 5.** Coefficients of Discontinuity Spacing,  $K_{sn}$ 

| <b>Discontinuity Spacing</b> |              | v i c sp |
|------------------------------|--------------|----------|
| Description                  | Distance (m) | $K_{sp}$ |
| Moderately close             | 0.3 to 1     | 0.1      |
| Wide                         | 1 to 3       | 0.25     |
| Very wide                    | >3           | 0.4      |

The factors influencing the magnitude of the coefficient are shown graphically in Figure 4 [13]. The relationship given in the figure is valid for a rock mass with spacing of discontinuities greater than 300 mm, aperture of discontinuities less than 5 mm (or less than 25 mm, if filled with soil or rock debris), and for a foundation width greater than 300 mm. For sedimentary rocks, the strata must be horizontal or nearly so.



**Figure 4.** Bearing pressure coefficient  $K_{sp}$ .

The bearing-pressure coefficient,  $K_{sp}$ , as given in Figure 4, takes into account the size effect and the presence of discontinuities and includes a nominal safety factor of 3 against the lower-bound bearing capacity of the rock foundation. The factor of safety against general bearing failure (ultimate limit states) may be up to ten times higher. For a more detailed explanation, see Ladanyi et al. (1974). Franklin and Gruspier (1983) discuss a special case of foundations on shale.

Bearing capacity of Pile Foundation founded on rock might be estimated as follows: Bearing Pressure from Strength of Rock Cores. The method described is applicable to deep foundations. According to Ladanyi and Roy (1971) the effect of depth is included and the formula becomes:

$$q_a = \sigma_c K_{sp} d \tag{27}$$

where:  $q_a$  = allowable bearing pressure,  $\sigma_c$  = average unconfined compressive strength of rock core, from ASTM D2938,  $K_{sp}$  = empirical factor, as given in Section 9.2 and including a factor of safety of 3, d = depth factor =  $1 + 0.4 \frac{L_s}{B_s} \le 3$ ,  $L_s$  = depth (length of the socket),  $B_s$  = diameter of the socket.

For limit states design, it is suggested that the ultimate axial capacity be calculated as multiplying the allowable value by three. The factored geotechnical resistance at ultimate limit states would then be obtained by multiplying the ultimate capacity by the geotechnical resistance factor of 0.4 and 0.3 for compression and uplift conditions respectively [14].

#### 3. RESULTS AND DISCUSSION

Some site investigation available to be evaluate consisting boring test and Standard Penetration Test to a dept of 30 m as required in SNI. The area of soil investigation is around Jimbaran and Kuta, Badung, Bali, Indonesia. Table 6 shows boring investigation in Batu Meguwung and Bingin Beach. Bore hole in Batu Meguwung shows limestone hard with N=50, insipte of brown clay layer from ground surface to a depth of 1 meter. Lime stone layer from depth of 1 m to 30 m consisting of hard limestone with UCT test  $c_u$ =40 kg/cm<sup>2</sup>=400 t/m<sup>2</sup>=4000

kPa. Figure 5 shows the core drilling of the hard limestone in the area of Batu Meguwung. According to Tabel 1 site classification is SC (hard soil, very solid and soft rock).

Table 6 also shows boring investigation in Bingin Beach. Bore hole in Bingin Beach reveal N values 28 to 50, give average N=33. Hard limestone is only with UCT test  $c_u$ =40 kg/cm²=400 t/m²=4000 kPa is found in a depth 1m to 5 m as shown by coring drilling in Figure 6. According to Tabel 1 site classification is SD (medium soil).



Figure 5. Core box of bore drilling result in Batu Meguwung Temple, Jimbaran, Badung.



Figure 6. Core box of bore drilling result in Bingin Beach, Badung in 4-5 meter depth.



Table 6. Bore-logs and SPT Result in Batu Meguwung and Bingin Beach

Table 7 shows soil investigation in Pemogan and Dewi Sri area. Soil in this area is dominated by sand in the upper layers. The N values in the upper layers to a depth of 16 meter in Pemogan shows N-SPT value varies between N=15 to 50. In the botom layer from depth of 16 to 30 meter consisting of coral showing N>50. Average N =15 to 50 in this Pemogan area. According to Tabel 1 site classification is SD (medium soil).

The values of N in Dewi Sri area N<15 from ground surface to depth of 18 meter as shown in Table 7. However, below this layer from depth of 18 meter to end of bore hole at 30 meter shows N>50. It might be counted to site classification of SE (soft soil) in Dewi Sri area.

**Table 7.** Results of drill logs and SPT

| Bor B-1 | Pemo | gan    |                            |             | Bor B- | 2 Dewi | Sri     |                |          |
|---------|------|--------|----------------------------|-------------|--------|--------|---------|----------------|----------|
| Kdlm    | Gw   | Bore   | Deskripsi t                | anah        | Kdlm   | Gw     | Bore    | Deskrips       | si tanah |
| (m)     | (m)  | Log    |                            | SPT (N)     | (m)    | (m)    | Log     |                | SPT (N)  |
| 0.0     |      |        |                            |             | 0.0    | *<br>3 |         | Humus          |          |
| 1.0     | _    |        | Pasir                      |             | 1.0    | 5      |         | Lempung        |          |
| 2.0     | ¥-   |        | Kelemungan                 |             | 2.0    |        |         | Limestone      |          |
| 3.0     |      |        |                            |             | 3.0    |        |         | Pasir Halus    | <15      |
| 4.0     |      |        | Pasir                      |             | 4.0    |        |         |                |          |
| 5.0     |      |        |                            | (28)        | 5.0    |        |         |                |          |
| 6.0     |      |        |                            |             | 6.0    |        |         |                |          |
| 7.0     |      |        |                            |             | 7.0    |        |         | Pasir          |          |
| 8.0     |      |        | Kapur                      | 15-50       | 8.0    |        |         | Abu-abu        |          |
| 9.0     |      |        |                            |             | 9.0    |        |         | (Lunak)        |          |
| 10.0    |      |        | ρ=1.61 g/cc                |             | 10.0   |        |         |                |          |
| 11.0    |      |        | cu=0.38 kg/cm <sup>2</sup> |             | 11.0   |        |         | ρ=1.62 g/cc    |          |
| 12.0    |      |        | w=62.64%                   |             | 12.0   |        |         | ф=25°          |          |
| 13.0    |      |        | Gs=2.67                    | Batas Keras | 13.0   |        |         | w=62.35%       |          |
| 14.0    |      |        | Cadas                      | \           | 14.0   |        |         | Gs=2.64        |          |
| 15.0    |      |        | Muda                       | 15-50       | 15.0   |        |         |                |          |
| 16.0    |      |        |                            |             | 16.0   |        |         |                |          |
| 17.0    |      |        |                            |             | 17.0   |        |         |                |          |
| 18.0    |      |        |                            |             | 18.0   |        |         |                |          |
| 19.0    |      |        |                            |             | 19.0   |        |         | Cadas          |          |
| 20.0    |      |        |                            |             | 20.0   |        |         |                |          |
| 21.0    |      |        |                            |             | 21.0   |        |         | Karang         |          |
| 22.0    |      |        |                            |             | 22.0   |        |         |                |          |
| 23.0    |      |        |                            | >50         | 23.0   |        |         | Cadas          |          |
| 24.0    |      |        |                            |             | 24.0   |        |         | Pasir semented |          |
| 25.0    |      |        |                            |             | 25.0   |        |         |                | >50      |
| 26.0    |      |        | Karang                     |             | 26.0   |        |         | Pasir Halus    |          |
| 27.0    |      |        |                            |             | 27.0   |        |         | Hitam          |          |
| 28.0    |      |        |                            |             | 28.0   |        | l       |                |          |
| 29.0    |      |        |                            |             | 29.0   |        |         |                |          |
| 30.0    |      |        |                            |             | 30.0   |        |         |                |          |
|         |      | Bore L | og in Pemogan              |             |        | Bore   | e Log i | n Dewi Sri     |          |

According to SNI 1726-2019 maximum earthquake parameters in Bali, Indonesia  $S_s$ =0.9 to 1.0g,  $S_1$ =0.3 to 0.4g, PGA=0.4 to 0.5g, with risk coefficient  $C_{RS}$ =1 to1.05 for periode respond spectral 0.2 second and  $C_{R1}$ =0.95 to 1 for periode respond spectral 1 second. These parameters based on respond spectra of maximum earthquake considered risk-targeted (MCE<sub>R</sub>) Indonesian region for 0.2-second response spectrum (critical attenuation 5%) as basic reference. Respond spectra for others site classification as mention in Table 1 should follow the guide line provided by SNI 1726: 2019.

Based on the soil site class test results that have been obtained, the design spectral response based on SNI 726;2019 can be determined as shown in Figure 7, Figure 8, and Figure 9.

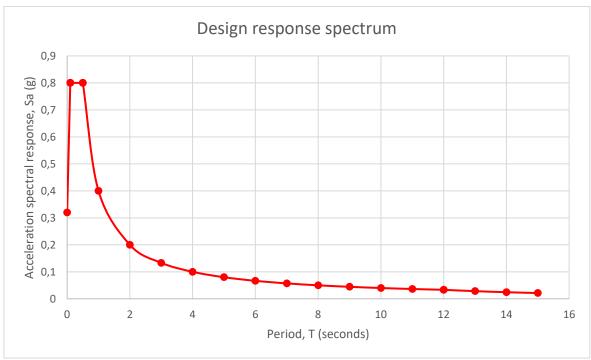



Figure 7. Design response spectrum for SC (hard soil, very solid and soft rock).

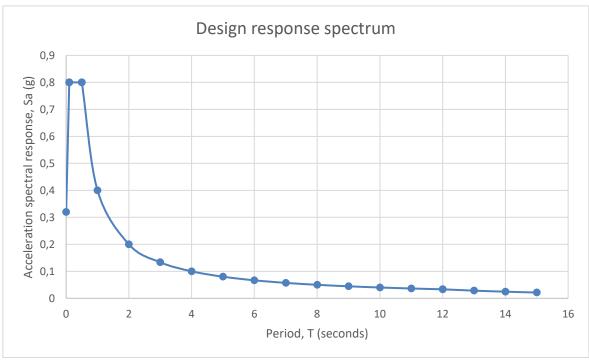



Figure 8. Design response spectrum for SD (medium soil).

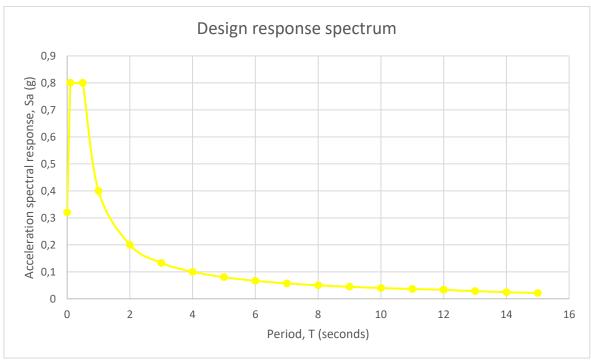



Figure 9. Design response spectrum for SE (soft soil).

## 4. CONCLUSIONS

Soil investigation taken from four sites in this Jimbaran and Kuta area reveal soil site classification as SC (hard soil, very solid and soft rock), SD (medium soil) and SE (soft soil). Maximum earthquake parameters in Bali, Indonesia Ss=0.9 to 1.0g, S1=0.3 to 0.4g, PGA=0.4 to 0.5g, with risk coefficient CRS=1 to 1.05 for respond spectral period of 0.2 second and CR1=0.95 to 1 for respond spectral period of 1 second. In conclusion, SNI 1726-2019 provides site classification for seismic design of infrastructures and site investigation shows the good agreement with the national standard.

#### REFERENCES

- [1] Badan Standardisasi Nasional, "SNI 1726:2019 Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung," *Jakarta: BSN*, 2019.
- [2] California Department of Transportation, Caltrans Seismic Design Criteria Version 2.0. 2019.
- [3] Badan Standardisasi Nasional, "SNI 4153:2008 Tata cara uji penetrasi lapangan dengan SPT," *Jakarta: BSN*, 2008.
- [4] R.F. Craig and J.A. Knappett, *Craig's Soil Mechanics (9th Edition)*. CRC Press, Taylor & Francis Group, 2019.
- [5] I Wayan Redana, Mekanika Tanah. Udayana University Press, Denpasar, Bali, Indonesia, 2011.
- [6] Karl Terzaghi and Ralph B. Peck, *Soil Mechanics in Engineering Practice*, 2nd ed. New York: John Wiley & Sons, Inc., 1967.
- [7] Ralph B. Peck, Walter E. Hanson, and Thomas H. Thornburn, *Foundation Engineering (2nd Edition)*. New York: John Wiley & Sons, Inc., 1974.
- [8] Braja M. Das, *Principles of Foundation Engineering (9th Edition)*. Boston, USA: Cengage Learning, 2019.

- [9] Braja M. Das and Khaled Sobhan, *Principles of Geotechnical Engineering (9th Edition)*. Boston, Massachusetts: Cengage Learning, 2017.
- [10] Evert Hoek and Edwin T. Brown, *Underground Excavations in Rock*. London, United Kingdom: Institution of Mining and Metallurgy (IMM), 1980.
- [11] I Wayan Redana, Teknik Pondasi. Denpasar, Bali, Indonesia: Udayana University Press, 2010.
- [12] Canadian Geotechnical Society, *Canadian Foundation Engineering Manual*, 5th Edition. Vancouver, British Columbia, Kanada: BiTech Publisher, 2023.
- [13] B. C. Punmia, A. K. . Jain, and A. K. . Jain, *Soil mechanics and foundations*. Laxmi Publications, 2017.
- [14] George Kouretzis, Fundamentals of Foundation Engineering and Their Applications. University of Newcastle, Callaghan, New South Wales, Australia, 2025.