Evaluation of stochastic oscillator and parabolic sar technical indicator performance in investment strategy decision-making

Authors

  • Detri Heri Gemita Faculty of Economics and Business, Universitas Hasanuddin, Indonesia
  • Asri Usman Faculty of Economics and Business, Universitas Hasanuddin, Indonesia
  • Mediaty Faculty of Economics and Business, Universitas Hasanuddin, Indonesia
  • Nur Huzaemah Faculty of Economics and Business, Universitas Hasanuddin, Indonesia

Keywords:

Stochastic Oscillator, Parabolic SAR, Investation Strategy, Technical Indicator

Abstract

The capital market plays an important role in the economy, with stocks as the main investment instrument that has the potential for high returns as well as fluctuating risks. To reduce risk, technical analysis is used through leading and lagging indicators to predict price direction. This study aims to compare the performance of the Stochastic Oscillator as a leading indicator and the Parabolic SAR as a lagging indicator in supporting stock investment decisions. The research method uses a descriptive and comparative quantitative approach with daily stock price data from the IDXGrowth30 index for the 2024 period. The analysis includes accuracy, profitability, and risk, which are tested using a t-test and Welch's t-test. The results show that the Stochastic Oscillator has an accuracy of 78.12%, a cumulative return of 1,112.10%, and a risk of -17.27%, while the Parabolic SAR has an accuracy of 30.56%, a cumulative return of -100%, and a risk of -5,332.09%. The conclusion shows that the Stochastic Oscillator is statistically and empirically superior in generating accurate signals, high profits, and lower risk.

Author Biography

Detri Heri Gemita, Faculty of Economics and Business, Universitas Hasanuddin, Indonesia

Mahasiswa Magister Akuntansi Universitas Hasanuddin

References

Abbas, A., Triani, N., Rayyani, W. O., & Muchran, M. (2023). Earnings growth, marketability and the role of Islamic financial literacy and inclusion in Indonesia. Journal of Islamic Accounting and Business Research, 14(7), 1088–1105. https://doi.org/10.1108/JIABR-12-2021-0322

Anand, A., & Venkataraman, K. (2016). Market conditions, fragility, and the economics of market making. Journal of Financial Economics, 121(2), 327–349. https://doi.org/10.1016/j.jfineco.2016.03.006

Andersen, T. G., & Bondarenko, O. (2013). Assessing VPIN Measurement of Order Flow Toxicity via Perfect Trade Classification. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2292602

Ao, S.-I., Castillo, O., Douglas, C., Feng, D. D., Korsunsky, A., & International Association of Engineers. (2018). Dual Time Frame Relative StrengthStock SelectionUsing Fuzzy Logic. International MultiConference of Engineers and Computer Scientists : IMECS 2018: 14-16 March, 2018, the Royal Garden Hotel, Kowloon, Hong Kong. II, 999.

Aveh, F. K., & Awunyo-Vitor, D. (2017). Firm-specific determinants of stock prices in an emerging capital market: Evidence from Ghana Stock Exchange. Cogent Economics & Finance, 5(1), 1339385. https://doi.org/10.1080/23322039.2017.1339385

Basak, S., Kar, S., Saha, S., Khaidem, L., & Dey, S. R. (2019). Predicting the direction of stock market prices using tree-based classifiers. The North American Journal of Economics and Finance, 47, 552–567. https://doi.org/10.1016/j.najef.2018.06.013

Bergh, D. D., Connelly, B. L., Ketchen, D. J., & Shannon, L. M. (2014). Signalling Theory and Equilibrium in Strategic Management Research: An Assessment and a Research Agenda. Journal of Management Studies, 51(8), 1334–1360. https://doi.org/10.1111/joms.12097

Bhargavi, R., Gumparthi, S., & Anith, R. (2017). Relative strength index for developing effective trading strategies in constructing optimal portfolio. International Journal of Applied Engineering Research, 12(19), 8926–8936.

Bing Anderson Shuyun Li, A. (2015). “An investigation of the relative strength index” NUMBER OF REFERENCES 0 NUMBER OF FIGURES 0 NUMBER OF TABLES 0 An investigation of the relative strength index. 10(1).

Bradic-Martinovic, A. (2006). Stock market prediction using technical analysis. Economic Annals, 51(170), 125–146. https://doi.org/10.2298/EKA0670125B

Byrne, D. J., Browne, D. T., Byrne, P. J., & Richardson, N. (2017). Interday Reliability of the Reactive Strength Index and Optimal Drop Height. Journal of Strength and Conditioning Research, 31(3), 721–726. https://doi.org/10.1519/JSC.0000000000001534

Chapter 9: Volume Signals: Tracking Price Trends. (2019). In Practical Trend Analysis (pp. 201–222). De Gruyter. https://doi.org/10.1515/9781547401086-009

Chong, T., Ng, W.-K., & Liew, V. (2014). Revisiting the Performance of MACD and RSI Oscillators. Journal of Risk and Financial Management, 7(1), 1–12. https://doi.org/10.3390/jrfm7010001

Chourmouziadis, K., & Chatzoglou, P. D. (2016). An intelligent short term stock trading fuzzy system for assisting investors in portfolio management. Expert Systems with Applications, 43, 298–311. https://doi.org/10.1016/j.eswa.2015.07.063

Connelly, B. L., Certo, S. T., Ireland, R. D., & Reutzel, C. R. (2011). Signaling Theory: A Review and Assessment. Journal of Management, 37(1), 39–67. https://doi.org/10.1177/0149206310388419

Daniswara, D. A., Widjanarko, H., & Hikmah, K. (2022). THE ACCURACY TEST OF TECHNICAL ANALYSIS OF MOVING AVERAGE, BOLLINGER BANDS, AND RELATIVE STRENGTH INDEX ON STOCK PRICES OF COMPANIES LISTED IN INDEX LQ45. Indikator: Jurnal Ilmiah Manajemen Dan Bisnis, 6(2), 16. https://doi.org/10.22441/indikator.v6i2.14806

Das, A. K., Mishra, D., Das, K., Mohanty, A. K., Mohammed, M. A., Al-Waisy, A. S., Kadry, S., & Kim, J. (2022). A Deep Network-Based Trade and Trend Analysis System to Observe Entry and Exit Points in the Forex Market. Mathematics, 10(19). https://doi.org/10.3390/math10193632

Dinesh, S., R, N. R., Anusha, S. P., & R, S. (2021). Prediction of Trends in Stock Market using Moving Averages and Machine Learning. 2021 6th International Conference for Convergence in Technology (I2CT), 1–5. https://doi.org/10.1109/I2CT51068.2021.9418097

Edwards, R. D., Magee, J., & Bassetti, W. H. C. (2018). Technical Analysis of Stock Trends. CRC Press. https://doi.org/10.4324/9781315115719

Garcia, R. M., Perez, E. V., & San, R. A. S. (2020). No Title. Optimización Temporal de Las Señales Automáticas Proporcionadas Por Indicadores Técnicos Bursátiles. https://e-spacio.uned.es/entities/publication/d953a5b7-01a8-4187-b09c-f6dda3e1b651/full

George, J., Nair, A. M., & Yathish, S. (2022). Analysis of Market Behavior Using Popular Digital Design Technical Indicators and Neural Network (pp. 445–458). https://doi.org/10.1007/978-981-16-2126-0_37

Gurrib, I., & Kamalov, F. (2019). The implementation of an adjusted relative strength index model in foreign currency and energy markets of emerging and developed economies. Macroeconomics and Finance in Emerging Market Economies, 12(2), 105–123. https://doi.org/10.1080/17520843.2019.1574852

Gurrib, I., Nourani, M., & Bhaskaran, R. K. (2022). Energy crypto currencies and leading U.S. energy stock prices: are Fibonacci retracements profitable? Financial Innovation, 8(1). https://doi.org/10.1186/s40854-021-00311-8

Hassani, H., Komendantova, N., Rovenskaya, E., & Yeganegi, M. R. (2023). Social Trend Mining: Lead or Lag. Big Data and Cognitive Computing, 7(4), 171. https://doi.org/10.3390/bdcc7040171

Hsu, L.-C. (2014). A HYBRID MULTIPLE CRITERIA DECISION-MAKING MODEL FOR INVESTMENT DECISION MAKING. Journal of Business Economics and Management, 15(3), 509–529. https://doi.org/10.3846/16111699.2012.722563

Hu, W., & Zhou, J. (2024). Trading Signal Survival Analysis: A Framework for Enhancing Technical Analysis Strategies in Stock Markets. Computational Economics, 64(6), 3473–3507. https://doi.org/10.1007/s10614-024-10567-8

Huang, Z., Heian, J. B., & Zhang, T. (2011). DIFFERENCES OF OPINION, OVERCONFIDENCE, AND THE HIGH-VOLUME PREMIUM. Journal of Financial Research, 34(1), 1–25. https://doi.org/10.1111/j.1475-6803.2010.01283.x

Huy, T. P., & Cuong, N. T. (2018). Effectiveness of Investment Strategies Based on Technical Indicators : Evidence from Vietnamese Stock Markets. April.

Jain, E. (2019). Technical analysis and National Stock Exchange of India: testing the RSI rule using CNX Nifty index. Afro-Asian J. of Finance and Accounting, 9(4), 406. https://doi.org/10.1504/AAJFA.2019.10024365

Koegelenberg, D. J. C., & van Vuuren, J. H. (2024). A dynamic price jump exit and re-entry strategy for intraday trading algorithms based on market volatility. Expert Systems with Applications, 243(December 2023), 122892. https://doi.org/10.1016/j.eswa.2023.122892

KSEI Indonesia Central Securities Depository. (2024). Statistik Pasar Modal Indonesia. Publikasi PT Kustodian Sentral Efek Indonesia, 1–7. https://www.ksei.co.id/publications/demografi_investor

Lutey, M. (2022). Robust Testing for Bollinger Band, Moving Average and Relative Strength Index. Journal of Finance Issues, 20(1), 27–46. https://doi.org/10.58886/jfi.v20i1.3218

Ma, C., & Yan, S. (2022). Deep learning in the Chinese stock market: The role of technical indicators. Finance Research Letters, 49, 103025. https://doi.org/10.1016/j.frl.2022.103025

Maeno, T., Iwasawa, Y., & Matsuo, Y. (2021). Leading Indicators for Detecting Change of Technology Trends: Comparison of Patents, Papers and Newspaper Articles in Japan and US. International Journal of Innovation and Technology Management, 18(04). https://doi.org/10.1142/S0219877021500176

Mateo, J. R. S. C. (2012). Multi Criteria Analysis in the Renewable Energy Industry (Universitas Cantabria (Ed.)). Springer, London. https://doi.org/https://doi.org/10.1007/978-1-4471-2346-0_2

Metghalchi, M., Kagochi, J., & Hayes, L. (2021). A technical approach to equity investing in South Africa: A tale of two indexes. Cogent Economics and Finance, 9(1), 1–20. https://doi.org/10.1080/23322039.2020.1869374

Muis, I. S., Prajawati, M. I., & S, B. (2021). Analisis Teknikal Return Saham dengan Indikator-Indikator Bollinger Band, Parabolic SAR, dan Stochastic Oscillator. Jurnal Samudra Ekonomi Dan Bisnis, 12(2), 143–153. https://doi.org/10.33059/jseb.v12i2.2467

Ndiritu, J. M. (2010). No Title Technical Trading Support System (TTSS); A Stock Market Analyst Support System. http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/23977

Neamat, S. D. S. (2019). A comparative study of safety leading and lagging indicators measuring project safety performance. Advances in Science, Technology and Engineering Systems, 4(6), 306–312. https://doi.org/10.25046/aj040639

Ngo, T., & Le, T. (2019). Capital market development and bank efficiency: a cross-country analysis. International Journal of Managerial Finance, 15(4), 478–491. https://doi.org/10.1108/IJMF-02-2018-0048

Nor, S. M., & Wickremasinghe, G. (2014). No Title The profitability of MACD and RSI trading rules in the Australian stock market. https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=The+profitability+of+MACD+and+RSI+trading+rules+in+the+Australian+stock+market&btnG=

Oktaba, P., & Grzywińska-Rąpca, M. (2023). Modification of technical analysis indicators and increasing the rate of return on investment. Central European Economic Journal, 10(57), 148–162. https://doi.org/10.2478/ceej-2023-0009

Oktaba, P., & Grzywińska-Rąpca, M. (2024). Predicting Price Trends in the Wheat Market Using Technical Analysis Indicators. Econometrics, 28(2), 18–31. https://doi.org/10.15611/eada.2024.2.02

Padhi, D. K., Padhy, N., Bhoi, A. K., Shafi, J., & Yesuf, S. H. (2022). An Intelligent Fusion Model with Portfolio Selection and Machine Learning for Stock Market Prediction. Computational Intelligence and Neuroscience, 2022, 1–18. https://doi.org/10.1155/2022/7588303

Prasetijo, A. B., Saputro, T. A., Windasari, I. P., & Windarto, Y. E. (2017). Buy/sell signal detection in stock trading with bollinger bands and parabolic SAR: With web application for proofing trading strategy. 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 41–44. https://doi.org/10.1109/ICITACEE.2017.8257672

Rosillo, R., de la Fuente, D., & Brugos, J. A. L. (2013). Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies. Applied Economics, 45(12), 1541–1550. https://doi.org/10.1080/00036846.2011.631894

Rupali Atul Mahajan, Arup Kadia, Monika Singh, R. D. S. K. S. M. (2024). Machine Learning based Financial Stock Market Trading Strategies with Moving Average, Stochastic Relative Strength Index and Price Volume Actions for Indian and Malaysian Stock Market. Journal of Electrical Systems, 20(2s), 759–767. https://doi.org/10.52783/jes.1576

Shalini, T., Pranav, S., & Utkarsh, S. (2019). Picking buy-sell signals: A practitioner’s perspective on key technical indicators for selected indian firms. Studies in Business and Economics, 14(3), 205–219. https://doi.org/10.2478/sbe-2019-0054

Srichawla, S., & Romprasert, S. (2017). The Effectiveness Of Confirming Indicators: A Case Study Of Stocks In Thailand Shivathep. The Journal of Risk Management and Insurance, 21(1), 41–60.

Sutejo, B. S., Sumiati, Wijayanti, R., & Ananda, C. F. (2023). Emotional intelligence and stock trading decisions: Indonesia’s millennial generation in the COVID-19 era. Asian Economic and Financial Review, 13(12), 949–969. https://doi.org/10.55493/5002.v13i12.4893

Svetek, M. (2022). Signaling in the context of early-stage equity financing: review and directions. Venture Capital, 24(1), 71–104. https://doi.org/10.1080/13691066.2022.2063092

v.zarnowits, charlotte boschan. (2013). No Title. NEW COMPOSITE INDEXES OF COINCIDENT AND LAGGING INDICATORSBy.https://www.semanticscholar.org/paper/NEW-COMPOSITEINDEXES-OF-COINCIDENT-AND-LAGGING-by-Zarnowitz Boschan/e45beb358d3a45cfcfe79b2548d0539d59eab5a7

Vincent, Saputra, B. J., Izzatunnisa, S. Y., Lucky, H., & Iswanto, I. A. (2023). Stock Market Prediction System Using LSTM with Technical Indicators as Voters. 2023 4th International Conference on Artificial Intelligence and Data Sciences (AiDAS), 229–234. https://doi.org/10.1109/AiDAS60501.2023.10284633

Downloads

Published

31-10-2025

How to Cite

Detri Heri Gemita, Asri Usman, Mediaty, & Nur Huzaemah. (2025). Evaluation of stochastic oscillator and parabolic sar technical indicator performance in investment strategy decision-making. E-Jurnal Akuntansi, 35(10). Retrieved from https://ejournal1.unud.ac.id/index.php/akuntansi/article/view/2971

Issue

Section

Articles